2004 Answers 2004 Final Exam Answers for Part I

1.	-2	14.	$y = -\frac{1}{5}(x+3)^2 + 5 \text{ or equivalent}$
2.	$V = \frac{5}{P}$	15.	C
3.	D	16.	В
4.	People per year	. 17.	$e^{-\frac{\pi}{2}} < y < e^{\frac{\pi}{2}}$
5.	\$225.00	18.	$f^{-1}(x) = \frac{e^x + 1}{3}$
6.	$y = \frac{7}{3}x - 2$. 19.	Α
7.	x < -1 or $x > 1$	20.	h(x) = -f(x+2)+2 or h(x) = 2 - f(-x)
8.	$1+10^{-2}$ or equivalent	21.	$x = 0, \ x = -2, \ x = 2$
9.	54.9 years	22.	C
10.	Α	23.	$y = -\frac{1}{5}(x+5)(x+1)(x-2)$
	$y = 3(0.5)^{x}$		C
	4	-	$y = 3\cos\left(\frac{\pi}{4}x\right) + 3$
	В		

2004 Final Exam Solutions for Part II

1.	a.	x	-4	- 2	0	2	4
		f(x)	2	- 2	7	1	- 5
		-f(-x)-6	- 1	- 7	- 13	- 4	- 8
		$f(2-\frac{1}{2}x)$	- 5	?	1	?	7
		$2 - \frac{1}{2}f(x)$	1	3	- 1.5	1.5	4.5

b.	x	- 3	- 2	- 1	0	1	2	3
	g(x)	- 6	4	3	0	- 3	- 4	6
	h(x)	- 6	- 1	2	1	2	-1	-6

- 2. a. The new function can be written as $y = 7 + 3\cos[6(x+3)]$.
 - b. 1. The amplitude of the function is 200, so this is the radius of the circle. Therefore, the circumference of the circle is $C = 400\pi \approx 1,257$ feet.
 - 2. The time it takes to go once around the track corresponds to the period of the function. The period is expressed as $\frac{2\pi}{B}$, so $P = \frac{2\pi}{\frac{2}{3}} = 3\pi$ sec.

3. Average speed = $\frac{\text{distance}}{\text{time}} = \frac{400\pi}{3\pi} \approx 133 \frac{\text{ft}}{\text{sec}}$.

- c. Using a graphing utility or a solver function, the gum is above 9 inches between $t \approx 0.1$ sec. and $t \approx 0.4$ sec.
- d. We need to solve $9 = 13\sin(4\pi t \frac{\pi}{2}) + 13$ for t. This yields $t_1 = \frac{\arcsin(\frac{-4}{13}) + \frac{\pi}{2}}{4\pi}$. From part (c) we know there is a second value, and it is in the 4th quadrant. Realizing that the frequency is 4π , the period is 0.5. So $t_2 = 0.5 \frac{\arcsin(\frac{-4}{13}) + \frac{\pi}{2}}{4\pi}$. The gum is above 9" between t_1 and t_2 .
- 3. a. F b. F c. T d. T e. F f. T g. F h. F i. T j. T k. F l. F m. T n. T o. F
- 4. a. The population is $P(t) = 1,200,000e^{0.0238t}$.
 - b. The number of people that can be fed is N(t) = 2,000,000 + 15,000t.
 - c. Evaluating P(8) we obtain P(8) = 1,451,680. This is the size of the population in 2004.
 - d. The average rate of change is $\frac{\Delta P}{\Delta t} = \frac{P(8) P(0)}{8 0} = \frac{1,451,681 1,200,000}{8} \approx 31,460.$ people per year.
 - e. We solve $1,200,000e^{0.0238t} = 2,000,000 + 15,000t \rightarrow t \approx 30$. Therefore in the year 2026, the country's food supply is first unable to feed its population.
 - f. We solve $1,200,00e^{0.0238t} = 2,000,000 + 30,000t \rightarrow t \approx 42$. The time will not double.

- 5. a. The points (3,490) and (5,850) are on the supply curve. So, $m = \frac{\Delta q}{\Delta p} = \frac{850 490}{5 3} = 180$.
 - Thus, q 490 = 180(p 3), or $q_s = 180p 50$.
 - b. The points (1,180) and (1.50,170) are on the demand curve. So,

$$m = \frac{\Delta q}{\Delta p} = \frac{180 - 170}{1 - 1.50} = -20$$
. Thus, $q - 180 = -20(p - 1)$, or, $q_d = -20p + 200$

- c. Setting $q_s = q_d$, $180p 50 = -20p + 200 \rightarrow p = 1.25$. The equilibrium quantity is therefore 175.
- d. The new demand curve will be $q_{d_{new}} = -20(p+.25) + 200$. The supply curve remains unchanged. Therefore, $180p 50 = -20p + 195 \rightarrow p \approx 1.23$. The equilibrium quantity is $q \approx 171$.
- 6. a. The equation is $Q = 80e^{-0.17t}$.
 - b. The amount of caffeine is immaterial. $t = \frac{\ln 0.5}{-0.17} \approx 4$ hours.
 - c. The amount of caffeine in the body at 4 PM is $Q = 80e^{-0.17(8)} \Rightarrow Q \approx 20.53$ mg. Therefore, the percent of caffeine in the body at 4 PM is $\frac{20.53}{80} \times 100 \approx 26\%$.
 - d. The total caffeine is $Q_T = Q_1 + Q_2 = 80e^{-0.17(2)} + 80e^{-0.17(1)} \approx 124 \text{ mg.}$ Alternative algebraic solutions are acceptable.
- 7. a. The total cost is C(x) = 30,000 + 3x.
 - b. The average cost is $A(x) = \frac{30,000 + 3x}{x}$.
 - c. The asymptote is y = 3. In economic terms, the start-up cost becomes less and less of a factor as the number of units increases. Therefore, the asymptote (y = 3) for the average cost function is the unit cost value.
 - d. If $y = \frac{30000 + 3x}{x}$, then $x = \frac{30000 + 3y}{y}$. Therefore $y = A^{-1}(x) = \frac{30000}{x 3}$. This formula allows one to input the average cost. The output will be the number of skateboards that needs to be produced to achieve that average cost.
 - e. We want $A(x) = \frac{30,000 + 3x}{x} < 5 \rightarrow x > 15,000.$